Personalised Rating Prediction for New Users Using Latent Factor Models

Yanir Seroussi Fabian Bohnert Ingrid Zukerman

Faculty of Information Technology Monash University Melbourne, Australia

→ Ξ → < Ξ →</p>

< 🗇 🕨

Outline

- 2 Matrix Factorisation with User Attributes
- Inferring User Attributes

4 Evaluation

→ Ξ → < Ξ →</p>

< 🗇 🕨

Motivation

- Recommender systems help users deal with information overload
 - Often rely on ratings to model user preferences

イロト イポト イヨト イヨト

Motivation

- Recommender systems help users deal with information overload
 - Often rely on ratings to model user preferences
- Few ratings are available for new users
 - Rating prediction is challenging
 - Recommendation generation is challenging

< 回 > < 回 > < 回 >

Motivation

- Recommender systems help users deal with information overload
 - Often rely on ratings to model user preferences
- Few ratings are available for new users
 - Rating prediction is challenging
 - Recommendation generation is challenging
- But background information is often available
 - Demographics
 - User-generated texts

→ E → < E →</p>

< 🗇 🕨

Matrix Factorisation and New Users

- Matrix factorisation methods yield highly accurate and scalable rating predictions
 - ...but tend to perform poorly on new users

Matrix Factorisation and New Users

- Matrix factorisation methods yield highly accurate and scalable rating predictions
 - ...but tend to perform poorly on new users
- New users: the majority of the population
 - ...but a minority in test samples

Matrix Factorisation and New Users

- Matrix factorisation methods yield highly accurate and scalable rating predictions
 - ...but tend to perform poorly on new users
- New users: the majority of the population
 - ...but a minority in test samples
- We address the new user problem by considering explicit and implicit user attributes in matrix factorisation

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Traditional Matrix Factorisation

• The rating matrix $\mathbf{R}_{N \times M}$ is decomposed into user-factors $\mathbf{P}_{D \times N}$ and item-factors $\mathbf{Q}_{D \times M}$:

$\mathbf{R} \approx \mathbf{P}^T \mathbf{Q}$

Traditional Matrix Factorisation

• The rating matrix $\mathbf{R}_{N \times M}$ is decomposed into user-factors $\mathbf{P}_{D \times N}$ and item-factors $\mathbf{Q}_{D \times M}$:

$\mathbf{R} \approx \mathbf{P}^T \mathbf{Q}$

• The predicted rating for user *u* and item *i* is

$$\hat{r}_{ui} = \mathbf{p}_u^T \mathbf{q}_i$$

Traditional Matrix Factorisation

• The rating matrix $\mathbf{R}_{N \times M}$ is decomposed into user-factors $\mathbf{P}_{D \times N}$ and item-factors $\mathbf{Q}_{D \times M}$:

$\mathbf{R} \approx \mathbf{P}^T \mathbf{Q}$

- The predicted rating for user *u* and item *i* is
- Item biases and user biases can also be considered

$$\hat{r}_{ui} = \mu + b_i + b_u + \mathbf{p}_u^T \mathbf{q}_i$$

Traditional Matrix Factorisation

• The rating matrix $\mathbf{R}_{N \times M}$ is decomposed into user-factors $\mathbf{P}_{D \times N}$ and item-factors $\mathbf{Q}_{D \times M}$:

$\mathbf{R} \approx \mathbf{P}^T \mathbf{Q}$

- The predicted rating for user *u* and item *i* is
- Item biases and user biases can also be considered
- Ignoring user information improves accuracy for new users
 - ...but yields non-personalised predictions

$$\hat{r}_{ui} = \mu + b_i$$

Matrix Factorisation with User Attributes

• Considering user attributes for new users:

Switching model

$$\hat{r}_{ui} = \mu + b_i + \left\{egin{array}{cc} & u ext{ is a new user} \ & b_u + \mathbf{p}_u^T \mathbf{q}_i & otherwise \end{array}
ight.$$

æ

・ 回 ト ・ ヨ ト ・ ヨ ト

Matrix Factorisation with User Attributes

• Considering user attributes for new users:

- Switching model
- Probabilities of user attributes (P(a|u))

$$\hat{r}_{ui} = \mu + b_i + \begin{cases} \sum_{a} P(a|u) & u \text{ is a new user} \\ b_u + \mathbf{p}_u^T \mathbf{q}_i & \text{otherwise} \end{cases}$$

・ 回 ト ・ ヨ ト ・ ヨ ト

Matrix Factorisation with User Attributes

• Considering user attributes for new users:

- Switching model
- Probabilities of user attributes (P(a|u))
- Attribute biases (*b_a*) and factors (**y**_{*a*})

$$\hat{r}_{ui} = \mu + b_i + \begin{cases} \sum_{a} P(a|u) (b_a + \mathbf{y}_a^T \mathbf{q}_i) & u \text{ is a new user} \\ b_u + \mathbf{p}_u^T \mathbf{q}_i & \text{otherwise} \end{cases}$$

▲ 同 ▶ ▲ 臣 ▶ ▲ 臣 ▶

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Conclusion

Explicit Demographic Attributes

Our model is defined for discrete attributes

ъ

→ Ξ → < Ξ →</p>

< 🗇 🕨

Explicit Demographic Attributes

- Our model is defined for discrete attributes
- Some demographic characteristics are non-discrete

→ Ξ → < Ξ →</p>

< 🗇 🕨

Explicit Demographic Attributes

- Our model is defined for discrete attributes
- Some demographic characteristics are non-discrete
- Employing too many attributes may result in overfitting

Explicit Demographic Attributes

- Our model is defined for discrete attributes
- Some demographic characteristics are non-discrete
- Employing too many attributes may result in overfitting
- Therefore, we reduce the dimensionality of the attributes with *Principal Component Analysis* (PCA)

Conclusion

Implicit Textual Attributes

Converting texts into attributes is challenging

ъ

Conclusion

Implicit Textual Attributes

- Converting texts into attributes is challenging
- Token frequencies can be used to infer demographics
 - Continuous
 - Hundreds to thousands of tokens are required (overfitting)

Implicit Textual Attributes

- Converting texts into attributes is challenging
- Token frequencies can be used to infer demographics
 - Continuous
 - Hundreds to thousands of tokens are required (overfitting)
- We use Latent Dirichlet Allocation (LDA) to model users:
 - Traditionally used to find document topic distributions
 - Each user is represented by a single document
 - The document's "topic" distribution is the user's attribute distribution

Experimental Setup and Datasets

• Measure: Normalised root mean square error (NRMSE)

æ

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Experimental Setup and Datasets

- Measure: Normalised root mean square error (NRMSE)
- Protocol:
 - GivenX: all target users have X training ratings
 - Ten-fold cross validation on users

イロト イポト イヨト イヨト

Conclusion

Experimental Setup and Datasets

- Measure: Normalised root mean square error (NRMSE)
- Protocol:
 - GivenX: all target users have X training ratings
 - Ten-fold cross validation on users
- Datasets:

ヘロト ヘ戸ト ヘヨト ヘヨト

Experimental Setup and Datasets

- Measure: Normalised root mean square error (NRMSE)
- Protocol:
 - GivenX: all target users have X training ratings
 - Ten-fold cross validation on users
- Datasets:
 - MovieLens100K:
 - 100K movie ratings
 - Sparsity: 93.695%
 - User demographics (age, gender, occupation and location)

・ 回 ト ・ ヨ ト ・ ヨ ト

Experimental Setup and Datasets

- Measure: Normalised root mean square error (NRMSE)
- Protocol:
 - GivenX: all target users have X training ratings
 - Ten-fold cross validation on users
- Datasets:
 - MovieLens100K:
 - 100K movie ratings
 - Sparsity: 93.695%
 - User demographics (age, gender, occupation and location)
 - IMDb1M:
 - 67K rated movie reviews
 - Sparsity: 99.988%
 - 200K message board posts

Matrix Factorisation with Demographic User Attributes Protocol: Given1; Dataset: MovieLens100K

Matrix Factorisation with Textual User Attributes Protocol: Given1; Dataset: IMDb1M

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Conclusion

Impact of Our Results

Hard to predict impact on recommendation quality

ъ

Impact of Our Results

- Hard to predict impact on recommendation quality
- Seemingly small NRMSE improvements. However:

Impact of Our Results

- Hard to predict impact on recommendation quality
- Seemingly small NRMSE improvements. However:
 - Small improvements matter (Koren, 2008)

Conclusion

Impact of Our Results

- Hard to predict impact on recommendation quality
- Seemingly small NRMSE improvements. However:
 - Small improvements matter (Koren, 2008)
 - Our improvements are four times larger on high predictions (8+/10) than the average improvements

Conclusion

- Main contributions:
 - Matrix factorisation with user attributes
 - Demographic and textual user attributes
 - Personalised, more accurate rating predictions for new users

æ

・ 同 ト ・ ヨ ト ・ ヨ ト

Conclusion

- Main contributions:
 - Matrix factorisation with user attributes
 - Demographic and textual user attributes
 - Personalised, more accurate rating predictions for new users
- Future work:
 - Integrate sentiment analysis
 - Extend our model to consider item attributes
 - Evaluate our model as part of a recommender system

< 回 > < 回 > .